DOCUMENT RESUME

ED 422 925 IR 057 083

AUTHOR Urbaczewski, Andrew; Urbaczewski, Lise

TITLE Beyond Course Availability: An Investigation into Order and
Concurrency Effects of Undergraduate Programming Courses on
Learning.

PUB DATE 1997-00-00

NOTE 7p.; In: Proceedings of the International Academy for

Information Management Annual Conference (12th, Atlanta, GA,
December 12-14, 1997); see IR 057 067.

PUB TYPE Reports - Research (143) -- Speeches/Meeting Papers (150)
EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Academic Achievement; Higher Education; Information Science

Education; Instructional Effectiveness; Introductory
Courses; *Programming; *Programming Languages; Student
Attitudes; Student Surveys; Teaching Methods

ABSTRACT

The objective of this study was to find the answers to two
primary research questions: "Do students learn programming languages better
when they are offered in a particular order, such as 4th generation languages
before 3rd generation languages?"; and "Do students learn programming
languages better when they are taken in separate semesters as opposed to
simultaneously?"”" Students from nine introductory programming classes over two
semesters at a large Midwestern university were used as subjects for this
experiment; 275 students responded to a survey at the end of the semester.
Subject responses were divided into three groups, depending on the class
being rated. These classes were: introduction to Visual Programming,
introduction to COBOL programming, and introduction to C programming. To test
hypotheses, linear regression was used, running the data against two separate
dependent variables, grade and comfort factor. Mixed results were found for
the different types of classes. (AEF)

e de de do e do de de de de de de e de e ke e de ke de e de g de g de de e de de ke de de g ke ok ke ke e ke e ok ok e e ok e e o e ke o e e ke ke ok e ke ok ke b ok ke e ok ok e ke ok ok e ke ke ok

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
khkhkhkhhkhhkhkhhdhhhhhhhhhhhhhhhhhhhhhhhhhhhkhddddhkhhhkhhhhhhhhddhhhhhkhhhhhhhdhdhdhdhdhhdhhi

ERIC

Aruitoxt provided by Eic:

Q
o
I\
N
v
Q
64

BEYOND COURSE AVAILABILITY:
AN INVESTIGATION INTO ORDER AND
CONCURRENCY EFFECTS OF UNDERGRADUATE
PROGRAMMING COURSES ON LEARNING

U.S. DEPARTMENT OF EDUCATION

Office of Educational Research and Im
provement
EDUCATIONAL RESOURCES INFORMZJI'IBN
O This documCEl'\l"lTER o
! ent has been reproduced as
received from the pers izati
orignating person or organization
[w} Minor changes have been made to
Improve reproduction quality.

Lise Urbaczewski
Indiana University

° N
Points of view or opinions stated in thi
ted in this
dqctgment do not Necessarily represgll'n
official OERI position or policy.

INTRODUCTION

The process of undergraduate MIS education is
constantly evolving. As educators, we find
ourselves in a constant state of curriculum
redesign, often to meet the demands of the
various recruiters that visit our campuses each
Fall looking for new talent in the expanding field.
Quite often, these new technologies are
programming languages. It is common today to
hear recruiters ask for students skilled in
C++,Visual Basic, Powerbuilder, or Java before
entering the job market. In accordance with
Association for Computing Machinery (ACM)
curriculum design guidelines (ACM 1991), we
incorporate these technologies into our
curriculums, keeping the content as current as
possible. However, in the rush to design our
curriculums to give students maximum exposure
to required technologies, perhaps we overlooked
factors to maximize learning efficiency in our
students.

A debate exists today over the proper method of
programmer instruction. Research has been
conducted in the past to find the optimal
sequence for offering programming instruction.
Veteran programmers learned the older second
and third generation languages (2GLs and 3GLs)
before they learned 4GLs because no 4GLs
existed. Students now are often afforded the
opportunity to learn a 4GL or object-oriented
programming language without ever learning a
3GL. Empirical research in the past has found
mixed results (Manns and Carlson 1992, Rosson
and Alpert 1990), while authors have made

Andrew Urbaczewski
Indiana University

“PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

T. Case

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC).”

claims for first learning the object oriented
language (Currid 1992) and for first learning the
3GL (Powell 1997).

Moreover, students often find themselves in a
crunch to get registered for the required courses.
With the undergraduate MIS major's increasing
popularity, it is getting harder for the students to
arrange their schedules’' optimally. It is not
uncommon to find students taking two or three
different programming languages during the
same semester. The authors find it difficult to
believe that a student can perform optimally
under these conditions, as this would be like a
student trying to learn two spoken foreign
languages, like French and German, during the
same semester.

" Given the apparent mentioned conflicts, the

objective of our study was to find the answers to
2 primary research questions:

1) Do students learn languages better when
they are offered in a particular order, such as
4th Generation Languages (4GL) before
3GL's or vice versa or is there no effect?

2) Do students learn programming languages
better when they are taken in separate
semesters as opposed to simultaneously?

In an attempt to find the answers to these
questions, we decided to ask the students
themselves. In the classroom, programming
instructors hear a variety of complaints from
students regarding their difficulty or inability to

Proceedings of the 12 Annual Conference of the International Academy for Information Management 131

2

learn the language at hand. We divide these
comments in two groups. The first group is from
students who have learned a prior language and
are having difficulty learning a second language.
Often they are attempting to learn two
programming languages at the same time. This
is the group we call "But there's an easier way....."
The other group are students that have never had
any programming courses before. They tend to
report in the classroom that they feel inferior to
other students in the class who may know more
about computers or be more experienced with
programming. They are worried that their
objective performance in the class will suffer
because they are being compared to this other
group of students. This group we call "It's not
fair....."

Based on experiences noted in the classroom, we
formulate the following hypotheses:

Hla. Students that have a prior experience
with a programming language will have
higher grades in an introductory course
in that language than those who have no
prior experience with that programming
language.

H1lb. Students that have taken any
programming class will have better
grades in a course than those who have
not taken a programming class.

Hlc. Students who are taking more than one
programming language simultaneously
will have worse grades than those who
have taken the same programming
languages in any non-simultaneous
order.

We use grades in H1 because they are intended to
be an objective measure of performance.
However, there are often other factors than
mastery of the skill which figure into the
awarding of grades. These often include
attendance, year of progression through school,
and some factor of general intelligence.
Therefore, we also propose:

H2b. Students who have higher grade point
averages will perform better in a
programming course than those who have
lower grade point averages.

H2c¢. Students who have progressed further in

school will have higher grades in

programming courses than those who
have progressed less in school.

We would still like to get another dependent
measure of mastery of the skill. While objective
measures are important in science, a subjective
measure of mastery may also be important.
Students may make a high grade in a course but
not have any mastery of the material, and vice
versa. Therefore we propose level of comfort as a
dependent measure for student mastery of
programming material.

H3a. Students that have a prior experience
with a programming language will feel
more comfortable with that language
than those who have no prior experience
with that programming language.

H3b. Students that have taken any
programming class will feel more
comfortable with the language than those
who have not taken a programming class.
H3c. Students who are taking more than one
programming language simultaneously
will feel less comfortable with the
languages than those who have taken the
same programming languages in any
non-simultaneous order.

METHODOLOGY

Students from nine introductory programming
classes over two semesters at a large Midwestern
university were used as subjects for this
experiment. 275 students responded to a survey
at the end of the semester.
without compensation to the students, requiring
a few minutes of their time at the beginning of

the class. One response was determined to be
H2a. Students who attend class more regularly unusable and it was discarded. Subjects were
will have higher grades in programming also asked that if they had completed this survey
courses than those who do not attend in another class to indicate this at the top of the
class regularly. page, and 19 surveys were eliminated through

this method.
132 Proceedings of the 12" Annual Conference of the International Academy for Information Management

3

This was done .

The survey asked students to respond to several 1. Dependent Variable = Grade

items concerning their academic performance and A. Class Rated = Introduction to Visual
relative comfort with the language. Students Programming using Visual Basic
responded anonymously to remove threats to

internal validity (Campbell and Stanley 1963). Unstandardized Standardized

These items covered objective performance levels, Coefficients Coefficients t Sig.
such as grading, and subjective performance, B S.E. Beta

including comfort with the language and desire to (Constanty .560 .537 1.043 .299
learn more about the language. Subjects reported W-COBOL -359 420 -062 -.856 .393
not only on the class they were currently W-C A76 119 15 1.483 140
finishing but also on all other programming H-COBOL <.001 126 .069 750 .454
classes they had taken for a grade at the H-C <.001 121 .075 793 .429

collegiate level or above. This was done to Attendance .151 .050 223 3.053 .003

capture data about all their classes for PriorExp <.001 .035 213 2.822 .005

determination of ordering effects. GPA .397 123 234 3.242 .001
YrinColl <.001 .065 .048 615 .539

Subject responses were divided into three groups,

depending on the class being rated. These classes

were introduction to Visual Programming, B. Class Rated = Introduction to COBOL

introduction to COBOL programming, and programming

introduction to C programming. This of course

meant that the same subject may have been in Unstandardized Standardized

each of the three pools if she or he had taken all Coefficients Coefficients t Sig.

of the courses being examined. These groups B S.E. Beta

were analyzed individually and then compared to (Constant) 1.322 1.006 1.315 195

the others for significance. Linear regression was W-VB 195 464 .050 421 875

used with the same covariates against two W-C -164 220 -092 -746 459

different dependent variables, grade in the course H-VB -.281 374 -099 -750 457

and comfort level with the language. Reported H-C -159 235 -095 -677 .501

prior experience was also captured as a Likert Attendance —<.001 .098 -066 -.525 .602

scale and used as a covariate. PriorExp <.001 .089 -092 -731 .468

GPA 1.183 .243 605 4.876 .000

RESULTS AND INTERPRETATIONS YrinColl -315 167 -246 -1.890 .065

To test our hypotheses, we used linear regression,

running the data against two separate dependent C. Class Rated = Introduction to

variables, grade and comfort factor. As noted C programming

above, grade was the self reported letter grade for

the student for prior classes and expected grade Unstandardized Standardized

for the current class. This was then converted Coefficients Coefficients t Sig.

into the numeric equivalents at that university. B S.E. Beta

The data set was also divided into three (Constant) 549 .447 1.229 221

partitions, depending on the class being rated. W-VB 276 .105 170 2,635 .009

Since attendance was expected to have only a W-COBOL -297 .162 -117 -1.834 .068

significant influence on grade rather than H-VB <.001 128 .046 743 458

comfort level, they were only suggested as H-COBOL <.001 103 .013 196 845
hypotheses when grade was the dependent Attendance <.001 .045 J2 1724 .086
variable. We inserted the variables for H2 into PriorExp <.001 .024 185 2.901 .004
those regressions anyway for the reader's benefit. GPA 53 102 484 7.356 .000

YrinColl ~<.001 056 -.023 -.334 739

Proceedings of the 12* Annual Conference of the International Academy for Information Management 133

4

It is interesting that we find different results for
the different types of classes. This would support
the mixed results that we have seen before. For
the visual programming courses, we find grades
are in no way related to any other programming
language work. Attendance, Prior experience,
and GPA are the only significant factors affecting
grade, supporting Hla, H2a, and H2b. We fail to
reject the null hypothesis for H1b, Hlc, and H2c.

With the course in COBOL, however, we get
different results. The only significant predictor of
grade is GPA, supporting H2b. It is interesting
that Hla is not supported, perhaps giving
credibility to the notion that grades and mastery
are not perfectly related. Perhaps even more
significant is that year in school is marginally
significant (p=.065), in the opposite direction,
suggesting that students who are further along in
school will perform worse in COBOL. This may
be evidence for the term "senioritis", suggesting
that students may slack off on their studies as
they get closer to graduation.

Finally, the Introduction to C programming
course gives even different results. Hla is
supported, confirming that those who have prior
experience will earn a better grade. Taking the
course with the visual programming course
improves their grade in C, completely opposite of
Hlec. However, taking the course with COBOL is
marginally significant (p=.068), supporting Hlec.
This is especially interesting given that C is more
closely related to COBOL than it is related to
Visual Basic. H2b (GPA) is also supported, and
there is mild support (p=.086) for attendance
improving grades.

2. Dependent Variable = Comfort Level

A. Class Rated = Introduction to Visual
Programming using Visual Basic

Unstandardized Standardized

Coefficients Coefficients t Sig.
B S.E. Beta

(Constant) 3.223 1.038 3.106 .002
W-Cobol .883 .664 07 1481 140
W-C .536 223 188 2.407 .017
H-Cobol 387 244 146 1.586 15
HC 169 234 .069 721 472
Attendance <.001 .096 .052 705 .482

134

PriorExp .158 .067 178 2.350 .020
GPA <.001 237 .016 .220 .826
YrinColl 142 125 .089 1.142 .255
B. Class Rated = Introduction to
COBOL programming
Unstandardized Standardized

Coefficients Coefficients t Sig.

B S.E. Beta
(Constant} 4572 2.074 2.204 .032
W-VB 479 .798 .081 .601 .551
W-C 234 .458 .073 510 .612
H-VB -.281 779 -.055 -.360 .720
H-C .632 .461 218 1.369 A77
Attendance 245 .200 A75 1225 226
PriorExp ~<.001 .186 -01 =077 .839
GPA ~<.001 .498 -015 -.103 919
YrinColl -.346 347 -150 -.998 .323

C. Class Rated = Introduction to
C programming
Unstandardized Standardized

Coefficients Coefficients t Sig.

B S.E. Beta
(Constant) .560 537 1.043 .299
W-VB .674 194 231 3.476 .001
W-Cobol - -725 325 -148 -2.232 .027
H-VB- .686 .281 160 2.442 .015
H-Cobol <.001 221 .017 244 .807
Attendance <.001 .097 .028 .406 .685
PriorExp ~ .183 .053 230 3.449 .001
GPA .299 212 .096 1.408 161
YrinColl -.103 12 -.065 -.927 .355

Again in examining the Comfort variable, we get
mixed results. These results also tend to be
different from those using grade as a dependent
variable, lending more credibility to the notion of
grades and mastery being mildly correlated. In
the Visual Programming class, H3a is supported,
which may suggest that one semester of a visual
programming course is not enough to bring
novices on a par with more experienced users.
We were again surprised to find that H3c was
supported in the opposite direction than we
suspected, as increased comfort level was
reported from those who took the two classes
together.

Proceedings of the 12* Annual Conference of the International Academy for Information Management

In the COBOL course, we find nothing
significant. None of the variables we captured

were predictors of a person's comfort level with
COBOL.

The lack of support for many variables in the
COBOL course in both situations may be due to a
lack of power. There were far less students who
had taken the COBOL course (56) than the C
course (191) or the Visual Programming course
(173).

Finally, in the C course, we have a third set of
results. In line with the Visual Programming
course, students reported a higher comfort level if
they were taking the course concurrently with
visual programming, providing opposite support
for H3c. The more expected result was found
from students who were taking C with the
COBOL class, supporting H3c. H3b was also
supported with the Visual Programming course,
but it was not with the COBOL course. This was
the only instance where either H1b or H3b was
significant. Prior experience was also significant,

supporting H3a.

CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS

As we noted in our results section, the findings
we had with the data were very mixed. No single
hypothesis was supported across all classes when
".Comfort was the dependent variable, and only
GPA was supported consistently as a predictor of
Grade. These mixed results are not necessarily
bad, however. They help us in curriculum design,
which was the goal of this paper.

The Introduction to COBOL course was the one
which had the least predictors for either
dependent variable. GPA was the only predictor
of Grade, and there were no predictors of comfort
level. This can be interpreted to mean that
nothing gives anyone an undue advantage in the
COBOL course. Beginners are just as likely to do
well in the course as are experts. Thus we can
suggest Introduction to COBOL as the first
programming course in the programming
sequence.

Secondly, we noticed that students seemed to
"perform better in the C course when they had
already taken or were currently taking the visual
‘programming course. This did not hold true in

reverse. Thus we can suggest that students
should take visual programming first, and then a
course in COBOL.

FIGURE 1

Suggested Order of Courses:

1. COBOL
2. Visual Programming
3. C

More research should be done to try to discover
the reasons for the contrasting results. For
example, it is not clear to the authors why
students seem to perform better when taking C
concurrently with visual programming but worse
when taking it with COBOL programming. We
cannot explain these effects and would like to try

to investigate them further. Exploration into
student experiences with taking concurrent
programming languages would also help, at least
on a exploratory level. Perhaps comparing them
to students who have attempted to learn two
foreign languages simultaneously would help
discover learning and memorization patterns.

Moreover, we are unsure how this research
applies outside university settings. It would be
interesting to survey professional programmers
in the same manner. Professional training
courses could be used to find programmers of
different ability and style.

Overall, this research is of interest to researchers
in one of our forms of patronage to society,
educating students. We owe it our students (and
often our taxpayers) to help them as much as
possible in the education process. Finding the
optimal way to deliver that education is part of
our responsibility.

PARTIAL REFERENCES
ACM Curricula Recommendations Volume II:

Information Systems, Association for Computing
Machinery, 1991.

Proceedings of the 12" Annual Conference of the International Academy for Information Management 135

Currid, C. "IS Curriculum Continues to Evolve at
the Corporate Level", Infoworld, June 8, 1992, p.
S64.

Manns, M. and D. Carlson, "Retraining
Procedural Programmers: A Case Against
"Unlearning", Object Oriented Systems and
Language Applications Conference, 1992, pp. 131-
133. '

Powell, A. "Programming Course Sequence and
Prior Knowledge of Programming Languages: Do
they Affect Students' Grades?" Proceedings of the
AIS Americas Conference on Information
Systems, 1997. : '

Rosson, M. and S. Alpert. "The Cognitive
Consequences of Object-Oriented Design",
Human Computer Interaction, 1990, pp. 360-378.

Webster's New Collegiate Dictionary, 1993.

136 Proceedings of the 12" Annual Conference of the International Academy for Information Management

7

U.S. DEPARTMENT OF EDUCATION

Offlca of Educatlonal Rasaarch and Improvemant (OERI)
Educatlonal Rasourcas Information Centar (ERIC) l . ::

NOTICE

REPRODUCTION BASIS

This document is covered by a signed “Reproduction Release
(Blanket)” form (on file within the ERIC system), encompassing all
or classes of documents from its source organization and, therefore,
does not require a “Specific Document” Release form.

This documnent is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may
be reproduced by ERIC without a signed Reproduction Release
form (either “Specific Document” or “Blanket”). . .

